Solve:

$$
\begin{array}{rr}
14 x-2 y=46 & y=8-5 x \\
-2(7 x-y=23) & -3 x+2 y=-10 \\
-14 x+2 y=-46 & -3 x+2(8-5 x)=-10 \\
0=0 & -3 x+16-10 x=-10 \\
& \left.\begin{array}{rl}
y & =8 \cdot 5(2) \\
y=-2 x+16 & -13 x \\
& \frac{-13 x}{-13}
\end{array}\right)=-\frac{-26}{-13} \\
x & =2
\end{array}
$$

12. FLE by SSS

Yes $\angle N \cong \angle L$. If triangles are congruent, then corresponding angles are congruent.
13. Cannot be determined. SSA is not a congruence conjecture.
14. AIN by SSS or SAS

Yes $\angle G \cong \angle A$. If triangles are congruent, then corresponding angles are congruent
15. Cannot be determined. Parts do not correspond.
16. SAO by SAS

Yes $\overline{A O} \cong \overline{A T}$. If triangles are congruent, then corresponding parts are congruent.
17. Cannot be determined. Parts do not correspond.

4.5 - Are there other congruence shortcuts?

Angle-Side-Angle (ASA)

Two pairs of congruent angles and one pair of congruent sides (sides between the pairs of angles)

Side-Angle-Angle (SAA)

Two pairs of congruent angles and one pair of congruent sides (sides not between the pairs of angles)

Angle-Angle-Angle (AAA)

Three pairs of congruent angles

Investigation 4.5 on Sketchpad

ASA Congruence Conjecture: If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

SAA Congruence Conjecture: If two angles and a non-included side of one triangle are congruent to the corresponding two angles and nonincluded side of another triangle, then the triangles are congruent.

AAA: If all three angles of a triangle are congruent to all three angles of another triangle, then the triangles are not necessarily congruent.

Given: $E D \cong A B$ and $<D \cong<A$ Prove: $\triangle E D C \cong \triangle B A C$

What is the relationship between determining a triangle and being a congruence shortcut?

Since SAS is a congruence shortcut, is SSA?

What are the 4 congruence shortcuts that we have discovered?

Can you use ASA in one triangle and SAA in another triangle to prove the 2 triangles congruent? Explain.

